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 Raman, in a portrait painted in the 1950s.
 (Reproduced with permission of American Institute of Physics.)
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 Perceptual, Acoustical, and Musical Aspects
 of the Tambûrâ Drone

 EDWARD C. CARTERETTE, KATHRYN VAUGHN,
 & NAZIR A. JAIRAZBHOY

 University of Calif ornia, Los Angeles

 The basso continuo principle, as embodied in Rameau's theory of func-
 tional harmony, was paralleled by the introduction of drone instruments
 in the classical music of India. In order to understand how these two sys-
 tems are tied together in human music perception, we studied the role of
 tambûrà interactions with North Indian ràgs played on the sitâr. Raman
 (1914-1922) had applied his theory of discontinuous wave motion to
 mechanical and musical properties of the strings of the violin. He noted
 the remarkable, powerful harmonic series that arose from the nonlinear
 interaction of the tambùrà string and grazing contact with its curved
 bridge. We analyzed the waveforms of the most common drone tunings.
 Each of the four strings was played with and without juari ("life-giving"
 threads). The upward transfer and spread of energy into higher partials
 imparts richness to tambûrà tones and underlies the use of different
 drone tunings for different ràgs. Specific notes of ràg scales are selectively
 and dynamically enhanced by different drone tunings. Based on coinci-
 dent features of spectral and musical scale degrees, we computed an in-
 dex of spectral complexity of the interactions of tambûrà tunings with
 ràg scales. We speculate that the use of juari contributes to stable pitch
 centers, implied scale modulation, and an improvisational flexibility.

 Introduction

 Like Raman and Helmholtz before him, we seek to relate the physics of
 music to the perception of the listener. To metaphysical-aesthetical critics
 who rejected his theory of music as too coarsely mechanical, Helmholtz re-
 plied, ". . .that I cannot think I have undervalued the artistic emotions of
 the human kind ... by endeavouring to establish the physiological facts
 upon which esthetic feeling is based" (1877/1954, p. vii). Raman said of his
 work on the mechanical theory of the vibrations of bowed strings that,
 "emphasis is laid upon the cases which are of practical interest in music"
 (1918, p. 3).

 Requests for reprints may be sent to Edward C. Carterette, Department of Psychology,
 University of California, Los Angeles, Los Angeles, CA 90024.

 75
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 Before Raman

 BEFORE HELMHOLTZ

 A fine, succinct history of violin research is given by Hutchins (1983).
 Table 1 is a very brief synopsis that shows some of the key contributions to
 theory and experiments on musical strings between 1625 and 1918. It took
 some 100 years to go from knowing that tonal pitch was related to the
 length, tension, and unit mass of the string to having a dynamic solution of
 the motion of a vibrating string (by Taylor, ca. 1720). Another 100 years
 later in 1819, Savart, using a cogwheel frequency standard, showed how to
 relate nodal and antinodal regions to specific frequencies of resonance of
 violin plates. He found that the major role of the violin soundpost was to
 alter vibrational modes of top and back plates, not to transmit vibrations
 between them. The next, giant step was made in 1862 by Helmholtz, to
 whom we now turn.

 HELMHOLTZ

 It was Helmholtz's stated aim to connect the boundaries of physical and
 physiological acoustics on the one side to musical science and aesthetics on
 the other. He was a gifted experimenter and theorist. He devised acoustic
 resonators for analysis of partials of complex sounds. By means of electro-
 magnetic tuning forks he synthesized vowel sounds and showed that differ-
 ence of phase made no difference to timbre.

 Helmholtz studied plucked and struck strings and provided mathemati-
 cal solutions of their motion. He was not able to give a complete mechanical
 theory of the motion of strings excited by the violin bow because "the mode
 in which the bow affects the motion of the string is unknown" (1862, p.
 80).

 From his observations of the vibrational form of individual points in a
 violin string, Helmholtz was able to calculate the whole motion of the string
 and the intensity of the upper partial tones. To see the form of vibration, he
 devised the vibration microscope after an idea of Lissajou. In essence, a
 white grain of starch was fastened to a blackened violin string. An electric
 fork vibrated a doublet lens vertically against the horizontal motion of the
 bowed string. The resultant motion seen by Helmholtz was a Lissajou
 figure with cusps (Figure 1, B & C). (What Helmholtz saw you can see on an
 oscilloscope by driving its beam horizontally with a sine wave and vertically
 with a sawtooth of the same frequency.) It was easy to infer the vibrational
 forms and see that they were essentially different from a simple sinusoid
 (Figure ID, A &c B). The wave is a sawtooth. The two periods of time into
 which the waveform is divided are in the same ratio as the two sections of
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 TABLE 1

 Some Early Key Workers on the Properties of Musical Strings,
 Their Methods, Experiments and Major Findings

 Methods

 Worker Mathematics Experiments Major Findings

 Strings

 Galileo Arithmetic, Iron chisel scrapes Pitch increased
 (1564-1642) 1638 on brass plate with scraping speed
 Mersenne Arithmetic, Observed stretched Pitch of tone nearly
 (1588-1648) 1625 string f = (k/Length) x

 sqrt (Tension/Mass)

 Hooke Arithmetic, Vibrated cardboard Related frequency to
 (1633-1703) membrane by cogwheel pitch

 Taylor Calculus Dynamical solution Verified work of
 (1685-1731) of vibrating string Galileo & Mersenne
 Duhamel Calculus, Theorized on duality Sticking and slipping
 (1797-1872) 1841 of vibration period during bowing

 Violins & Musical Strings

 Savart Arithmetic, Measured frequency Related nodal and
 (1791-1841) 1819 by cogwheel; saw antinodal regions to

 Chladni patterns on specific frequencies
 bowed violin plates of resonance

 Helmholtz Fourier Tuned resonators & Observed: harmonics
 (1821-1894) transforms; electric forks; saw of complex tones;

 Kinematic Lissa j ou figures in sawtooth wave of the
 theory of vibration microscope bowed string,
 strings, of his own devising Computed the motion
 1 8 62 of the whole string

 Lord Rayleigh Electrical Used wide-ranging Unified foundations
 (1842-1919) circuit- theory in exploring of vibrating systems
 Nobel Prize, theory vibrations of bells, and acoustics
 1904 analogies, membranes, plates, 8c

 1877 shells

 Raman Fourier Devised mechanical Showed that minimum
 (1888-1970) series; bowing machine & bowing force varied
 Nobel Prize, dynamical moving-slit camera with speed of bow but
 1 930 theory of for observing motion inversely as square

 the bowed of the whole string of distance of bow
 string, interacting with bow from bridge; showed
 1911-1918 how "wolf note" arose

 from energetics of
 bowed fundamental

 and body resonance

 note. See Hutchins (1983).
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 the string that lie on either side of the observed point. The string velocity
 (the time derivative of the waveform) takes on two alternating values which
 are opposite in sign and different in magnitude, depending on whether the
 string is sticking to the bow or slipping back from the bow. The abrupt
 change at the bow from static to sliding friction is practically discontinu-
 ous. And such a flexible string in tension supports "all the upper partial
 tones and their intensity diminishes as their pitch increases" (p. 83).
 Helmholtz found that the amplitude of the nth partial was inversely pro-
 portional to the square of n.

 Helmholtz compared the simplest motion of a bowed string (Figure 2).
 At any instant the string consists of two straight segments bent at a corner.
 The projection of the corner moves back and forth with constant velocity
 on the straight line connecting a to b. The corner describes in succession
 two parabolic arcs, which appear to the eye as a lens-shaped envelope. The
 corner runs around the arcs once in each vibration cycle (440 times/sec for
 A = 440 Hz), clockwise if the bowing is upward, counterclockwise if the
 bowing is downward. During most of the cycle, the string sticks to the bow
 until the corner breaks it away. The string flies back swiftly but is caught
 again by the bow when the corner returns from the bridge. "Helmholtz'
 shuttling discontinuity is the timekeeper that precisely triggers the capture
 and release of the string at the bow" (Schelleng, 1974, p. 70).

 Fig. 1. Vibration microscope images (a-a), b-b, c-c) seen by Helmholtz for sinusoid (A) and
 for sawtooth waves (B, C). Vibrational waveforms as D (A and B) were inferred from such
 observed Lissajou figures as b-b or c-c. (From Helmholtz, 1865.)
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 The Tambura Drone 79

 Fig. 2. Shape of the bowed string computed by Helmholtz. (From Helmholtz, 1865.)

 Helmholtz believed that the velocity of flyback was constant but as de-
 scribed next, Raman (1918, 1920) showed that this was only approxi-
 mately true.

 Raman's Dynamic Theory of the Motion of Bowed Strings

 raman's new methods for seeing strings

 Raman (1914) wished to go beyond the kinematic knowledge about the
 motion of bowed strings given by Helmholtz and his successors. His attack
 was both theoretical and experimental. He sought for a deeper dynamic
 theory to replace the existing kinematic, geometric models. To this end, he
 developed a new kinematic method of recording the vibrations of the entire
 length of a bowed string in one photograph. He also devised a way of pro-
 jecting and photographing the images which Helmholtz (1865) had seen
 ". . . by the very beautiful, if a trifle complicated, method of the vibration-
 microscope" (Raman, 1914, p. 50).

 The first question he settled was whether the string's forward velocity is
 equal to that of the bowed point, a vital issue in any dynamic theory. Ra-
 man's (1914) elegant picture (Figure 3) simultaneously recorded both the

 Fig. 3. Simultaneous recording of the bow and the bowed point in contact with it. (From
 Raman, 1914.)
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 motion of the bow and the bowed point in contact with it. The motions are
 absolutely parallel, which led Raman to the generalization "... that in
 every case in which the motion of the bowed-point is a two-step zig-zag, the
 velocity of the forward notion is accurately equal to that of the bow" (p.
 45).

 RAMAN WAVES

 Helmholtz's shuttling discontinuity is a peculiar form of standing wave.
 Raman (1918) described the motion in another way, in terms of the compo-
 nent progressive waves of transverse velocity which, happily, take the form
 of straight lines in which the zigs are slow but the zags are instantaneous.
 When oppositely moving Raman waves reflected from bridge and nut are
 summed, the resulting wave shows that two different velocities exist at any
 point on the string (Figure 4). These two velocities are a function of the po-
 sition of the discontinuity between sticking and slipping.

 The Raman wave drives the bridge with a vibrational force wave whose
 form is identical to that of the Raman wave. Hence an analysis of the veloc-
 ity wave reveals the musical quality of the string before it is influenced by

 Fig. 4. Successive velocity diagrams at intervals of one twelfth of an oscillation (left column).
 Vibrations curves and displacement diagrams at equal intervals (right column). The two
 straight lines passing through the ends of the string meet at the point up to which the discon-
 tinuity in the velocity diagram has travelled at any instant (where the light and heavy lines
 meet). (From Raman, 1918.)
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 The Tambûra Drone 8 1

 body resonances or radiation. A Raman wave yields a power spectrum in
 which the amplitude of the nth harmonic is \ln times the amplitude of the
 lowest frequency, for the case in which there is but one discontinuous
 change of velocity.

 Raman (1918) treated a myriad of cases of irrational and rational divi-
 sion of the string by the bowed point, for one, two, or more discontinuous
 changes of velocity. He displays a great number of curves of velocity, vibra-
 tion, and frictional force with analyses of their spectra. Raman extends his
 treatment to many aspects of the bow and bowing, such as frictional prop-
 erties, finite bow width, interaction with the violin body, and string proper-
 ties. From this work, he induces a new, kinematic theory of a very impor-
 tant class of transitional vibration that can be controlled by the bow.

 ON THE "WOLF NOTE" IN BOWED STRINGED INSTRUMENTS

 If one bows a note whose fundamental frequency is coincident with a
 strong body resonance, of a cello say, a rough pulsating sound, the wolf
 note, jumps out with its intimations of octave pitch (e.g., Figure 5). Ra-
 man's (1916) qualitative explanation assumes that large amounts of energy
 may be shunted from the Helmholtz motion and stored in vibrations of the
 body. This further implies that the response of the body lags the bowing in
 time. While energy is being stored by the body, there is an increase in the
 rate at which the energy is lost by the string. At the same time the required
 minimum bow force increases. If this force exceeds the actual bow force

 before a stable state is reached, the (single-slip) Helmholtz motion transits
 to a double-slip state. Fed by the stored energy, the second slip grows into a
 new Helmholtz motion that is out of phase with the old. The repeating cycle
 is heard as a wolf tone.

 Raman's account was essentially correct. It was confirmed and amplified
 by Schelleng's (1963) elegant, complementary work which used coupled
 circuits in the frequency domain. One point brought out by Schelleng, but
 unclear in Raman, was the importance of the reversal of phase in alternate
 cycles (see Mclntyre & Woodhouse, 1978). Both theories agree that the
 wolf can be tamed by reducing coupling of string and body, which will re-
 duce the maximal amount of energy that can be stored. Thus, a lighter
 string will reduce coupling or an additional tuned string will lure the wolf
 away.

 Schelleng (1963) explains the wolf tone in terms of the self-excitation of
 beats, which Cremer (1981/1984, p. 279) flatly rejects. For Cremer, the
 wolf arises in the nonlinearity of sticking and sliding friction in bowing,
 which was Raman's (1916) view. This view is supported by Mclntyre and
 Woodhouse (1979), whose simulation of the bowed string properly in-
 cludes the effect of frictional excitation in the origin of the wolf tone.
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 Fig. 5. Simultaneous vibration curves of belly and G string of violincello at pitch of the wolf
 note (top, from Raman, 1918). Simulation of wolf tones on a computer (bottom, from Cre-
 mer, 1981/1984, after Mclntyre & Woodhouse, 1979). Velocity at point of bowing is
 shown in the upper trace; velocity of bridge is shown in the lower trace.

 THE BOWED STRING AFTER RAMAN

 Raman halted his work on bowed string instruments after 1918 and
 turned to his professorship at Calcutta University and work on optics.

 As part of her history of research on the violin, Hutchins (1983) surveys
 some 50 years of work on the bowed string, ". . . an extremely nonlinear
 dynamical system . . ." (p. 1431). She reviews the advances made by using
 electronic devices like the oscilloscope and recorder. Deeper knowledge of
 violin systems between 1930 and 1980 led to the development of an inte-
 grated octet of new instruments of the violin family of which Hutchins
 (1967) was the key founder. She was aided in this by Schelleng (1963), who
 used electrical circuit methods in his violin studies. He followed and illumi-
 nated earlier work of Raman and others on the bow-string interaction. In

 particular, he derived equations for the upper and lower limits of bow
 force. It turns out that rounding of the Helmholtz corner is a crucial factor
 in these limits on musical performance (Cremer &c Lazarus, 1968).
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 Cremer's (1981/1984) authoritative book gives a thorough mathemati-
 cal account of the physics of the violin: the bowing of the string, the body of
 the instrument, and the radiated sound. (Helmholtzian motion and Ra-
 man's model are treated in chapters 3 and 4.) "Only one goal remains elu-
 sive: that of deriving credible, objectively measurable criteria for the [sub-
 jective] evaluation of instruments" says Cremer (1981/1984, p. 2).

 The models of Helmholtz, Raman, and others assumed that the
 Helmholtz corner was perfectly sharp, but this is not true of a real string
 because of lossy compliance at the cusps of the Helmholtz motion. The
 most recent attacks on corner-rounding combine mathematical modeling,
 experiment, and computer simulation (Mclntyre 8c Woodhouse, 1978;
 Mclntyre, Schumacher &c Woodhouse, 1981, 1982). Regular spikes on the
 bridge-force waveforms, which cause audible noise in musical notes, were
 shown to arise from slipping of some hairs on the finite- width bow. Raman
 (1918, pp. 114-118) wrote equations that included a bow of finite width,
 but said that "... a complete evaluation of the integrals and a rigorous de-
 tailed treatment do not appear practicable" (p. 118).

 Raman's Remarks on Indian Stringed Instruments

 RAMAN NOTES A NONLINEAR INFLUENCE OF THE TAMBURA BRIDGE

 Raman (1922) drew attention to the remarkable acoustic properties of
 the tambura and the vïnà. In the tambura (Figure 6), "the string passes over
 the wooden upper surface of the bridge which is curved to shape, and by
 insertion of a thread of wool or silk, a finely adjustable grazing contact of
 string and bridge is secured . . . The tones of these instruments show a re-
 markable, powerful series of overtones which gives them a bright and pleas-
 ing quality" (p. 33). The Young-Helmholtz law stated that partials having a
 node at a plucked point should not be excited. Raman showed by experi-
 ments that this law was invalid because forbidden partials were present. To
 explain "the powerful retinue of overtones," Raman suggested that at or
 near the grazing point of contact impulses occurred once in each vibration

 Fig. 6. Curved wooden bridge of tambura. Thread allows adjustable contact of string and
 bridge. (From Raman, 1922.)
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 of the string and that there would be a continual transformation of the en-
 ergy of vibration of the fundamental into the overtones.

 RECENT FINDINGS ON SITÀR AND TAMBÛRÀ STRINGS

 Recent work confirms that the shimmering, metallic sound of tambûrà,
 vïnâ, and sitâr is due to the form of the bridge, which does not have a sharp
 edge, but is smooth and forms a curved obstacle around which the string
 wraps and unwraps during its vibration (Burridge, Kappraff &c Morshedi,
 1982). Variations in string length produce AM and FM modulation side-
 bands from upper partials. These resultants interact with other strings, giv-
 ing rise to narrow-band harmonically related clumps (Benade & Messen-
 ger, 1982). Such tones have complex time behavior but well-marked pitch.
 Differences in time of onset or rise time of partials affect timbre of tones of
 tambûrâ (Houtsma, 1982), and violin (Mclntyre et al., 1981) and simple
 abstracted string instruments (Miller & Carterette, 1975). In spite of the
 nonlinearity of tambùrâ strings, partials up to order 30 are very nearly har-
 monic (Houtsma, 1982; Carterette, Jairazbhoy, &c Vaughn, 1988).

 ANALYTICAL SOLUTION AND COMPUTER MODELING OF SITÀR STRING

 Burridge et al. (1982) give an analytical solution of the sitâr (and tam-
 bûrâ) string as a vibrating string with a one-sided inelastic constraint. The

 Fig. 7. Twelve positions of the string during a typical first phase cycle. Sequence starts with
 string horizontal and moving down clockwise from bridge. (From Burridge et al., 1982.)
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 string behavior was also modeled by computer. They showed that there are
 two phases to the motion. In the first phase, the plucked string collides with
 the bridge and is brought to rest instantaneously and inelastically. That part
 in contact with the bridge does not rebound until the dynamic motion of the
 string causes an unwrapping from the bridge (see Figure 7). During each
 vibrational cycle, the straight segment of the string through the origin de-
 creases in slope and impacts the top of the bridge. Helmholtz's first compli-
 cated phase gives way to a second phase as equilibrium is approached (Fig-
 ure 8).

 The second phase of motion resembles the solution given by Helmholtz
 for the motion of a violin string (see Figure 2). The point P moves around
 the closed curve made by two parabolic arcs with its horizontal velocity
 equal to the wave speed. At any instant, the position of the string is two
 straight line segments. The motion of the sitâr string is analogous (see Fig-
 ure 7) except that only one segment of the string is straight; the other is
 parabolic, albeit rather flat. Furthermore, in Helmholtz's solution cycles
 are identical and are repeated indefinitely without dissipation. In the case of
 sitâr, the (n + l)th cycle will be different from the nth cycle.

 We remark that, in the violin, rounding of the circulating corner by peri-
 odical reflection at string termini leads to a fall in amplitude of higher par-
 tials, which should be perceived as a softer tone quality. However, the cor-
 ner is resharpened as it passes under the bow (Cremer, 1981/1984, p. 79 ff).
 And, the greater the bow force, the sharper is the corner. The result is to
 increase the amplitude of higher partials in the radiated spectrum, which is
 perceived as an increased brilliance of tone color. Thus, different mecha-
 nisms in violin and sitâr lead to similar perceptual effects.

 Fig. 8. Solution for the sitar string during the second phase. At any instant the position of the
 string is given by two segments, one straight (as OPi, OP2), but the other parabolic (as PiB,
 P2D). (From Burridge et al., 1982.)
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 On the Relationship of Tambûrà Spectra to Râg Scales

 SOME NOTES ON INDIAN CLASSICAL MUSIC

 Modern North Indian classical music has its roots in ancient Indian mu-

 sic, but appears to have acquired its present form after the fourteenth or
 fifteenth century. We mention some central features.

 1. The main melody line is monodic with an accompaniment.
 2. The melody line is generally played against a fixed, unchanged

 drone which is based on the tonic, its octave, fifth, fourth, sev-
 enth, and sometimes the third. This is usually played on a tam-
 bûrà, a long-necked lute with four or five strings. The tambùrâ
 has no frets and sounds only on the open-string notes.

 3. A vocalist is accompanied by a secondary melody line usually
 on a sârangï or a harmonium. If on a harmonium, the vocalist
 himself may play it.

 4. There is a percussive line usually played on the tabla. The
 tabla is a pair of small kettle drums struck with the hands. The
 percussive instrument serves primarily as a time keeper but
 also is used for rhythmic variations and improvisation.

 We note that many of these musical instruments can do more than one
 thing. The sitàr not only carries a melodic line but has special strings called
 eikari for supplying its own drone and also sympathetic strings call tarab,
 which provide an echo.

 In the classical music of India there are two elements: râg, which is the
 melodic framework and tâl, which is the time measure.

 Râg

 The ràg has no counterpart in Western musical theory. The concept of
 ràg is that certain characteristic patterns of notes evoke a rasa or heightened
 state of emotion. In fact, the Sanskrit root of ràg is ranj or raj, which means
 to color to tinge.

 The note patterns fuse scalar and melodic elements. Each ràg can be de-
 scribed in terms of its ascending and descending lines and also characteristic
 figures where certain intervals are emphasized and attention is focused on
 particular notes.

 There are more than 200 extant ràgs. Most are very old and have evolved
 into their present form. The ràg is a melodic basis for composing and im-
 provisation.

 The râg begins with an àlàp, which is an improvised prelude in free time
 to exhibit the melodic characteristics of the ràg being performed. When the
 àlàp is done, a composed piece set in a particular tâl is introduced.
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 Tàl

 The time measure is conceived as a cycle of two main aspects:

 1. Quantitative. This is the duration of a cycle in terms of time
 units of beats, usually three tempos, slow, medium, and fast.

 2. Qualitative. This refers to the distribution of stresses or
 accents within the cycle. There are at least two levels of stress
 and also an accent by negation where an expected secondary
 stress in the cycle is omitted. The patterns of stress are often
 marked during performance by a participant whose role is to
 keep the tàl.

 Notes

 There are seven notes: Sa, Re, Ga, Ma, Pa, Dha, and Ni. The addition of
 accidentals about Re, Ga, Ma, Dha, and Ni gives a set of 12 notes. There is
 no absolute or fixed pitch attached to the notes. The ground note is called
 Sa, whatever its pitch. Once the pitch of Sa has been established it remains
 fixed over the course of the râg; the other notes of the scale are tuned rela-
 tive to Sa. There is no formal modulation in Indian music.

 The Drone as a Ground in a Figure-Ground Relationship

 The râg and tàl interact against a constant background of the drone.
 What possible role can the drone play? Jairazbhoy (1971, p. 65) holds that
 "The ground-note is the point of reference for measuring the intervals used
 in any ràg." The relation between any note and the ground-note underlies
 the dynamic quality of the note, a perceptual aspect of which is a tension
 toward completion. "Only the ground-note is at rest and needs no comple-
 tion."

 However, there are a variety of possible tunings of the tambûrà, and dif-
 ferent tunings are chosen for different ràgs. Also, the drone is a dynamic
 complex of four tones that interact with each other and with the melodic
 line. The drone is plucked in continual iteration, each string coming to life
 then decaying in a shimmering tangential dance against the bridge.

 TUNINGS

 In North Indian music, the tambura player alters the degree of grazing
 contact of the string with the bridge by placing a thread under the string.
 These threads, which are called juari or "life-giving threads," cause an up-
 ward transfer of energy into the higher partials. The resulting spectral com-
 plexity is perceived as a buzz.
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 There are a variety of possible tunings of the tambûrâ, and different tun-
 ings are chosen for different rags. For example, there are three commonly
 used tunings, Ni, Pa, and Ma (Table 2). Pa is the most common drone, Ni is
 the least common and is often used in rags that have neither Pa nor Ma as a
 primary scale tone. Note that the Ma and Pa tunings are inversions of each
 other. The man thrust here is to suggest how tunings interact with different
 rags, based on the Sa tonic.

 In order to identify how specific notes of râg scales are selectively and
 dynamically enhanced by different drone tunings of the tambûrâ, with and
 without juari, the waveforms of the most common drone tunings of the four
 strings (Pa Sa Sa Sa') (where Sa' = low Sa) were analyzed. From that analy-
 sis, we create a model of the projected interaction of those drone tunings
 and give several musical examples.

 SPECTRA OF DRONE STRINGS

 Recordings were made of drones and individual strings in the context of
 a given tuning, played by one of us (NAJ) on a concert-quality tambûrâ in a
 small concert room. The output of a condenser microphone was fed into a
 single channel of a reel-to-reel tape recorder (Nagra, Model MS) at 19 cm/
 sec.

 Spectra were made on a dynamic signal analyzer (Hewlett-Packard Type
 3561 A) by using a rectangular window, and samples of either 160 msec or
 80 msec (0-2500 Hz or 0-5000 Hz band stops). A stop-band of 2500 Hz
 was chosen initially because the partials of the string without juari were 40
 dB or more below the partial of maximum amplitude by the sixteenth par-
 tial. The bandwidth of the analyzer was 23.87 and 47.76 Hz for the 2500-
 Hz and 5000-Hz band, respectively.

 Figures 9, 10, and 11 show the analyses for the three strings Pa, Ni, and
 Ma, respectively. A comparison of the spectrum of the Pa string without
 and with the juari thread will illustrate the general findings. Relative ampli-
 tude in decibels is plotted on the ordinate with a maximum range of 80 dB,
 as a function of frequency (in hertz) on the abscissa. The dotted vertical

 table 2

 The Commonly Used Tunings of the Tambûrâ

 Tuning Notes Degrees Interval

 Pa Pa Sa Sa Sa' 5 8 8 1 Fifth

 Ma Ma Sa Sa Sa' 4 8 8 1 Fourth

 Ni Sa Ni Sa Sa' 8 7 8 1 Seventh
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 Fig. 9. Power spectrum of Pa drone string without juari thread (A) and with juari thread (B).
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 Fig. 10. Power spectrum of Ni drone string without juari thread (A) and with juari thread
 (B).
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 Fig. 11. Power spectrum of Ma drone string without juari thread (A) and with juari thread
 (B).
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 lines show the position of the first 20 partials of the fundamental, which is
 marked by a dashed line. The fundamental is located at 106.25 Hz and has
 a relative amplitude of -33.17 dBV for the Pa string without juari (Figure
 9A). Total harmonic distortion (THD) was 18.10 dB, which corresponds to
 about 804% rms voltage distortion. [THD = 20 log (% rms/100)]. The Pa
 spectrum is typical of the other spectra without juari, namely that the sec-
 ond and third partials tend to be weaker than the fundamental and the
 fourth and fifth tend to be strongest, with a nearly linear decline in decibels
 thereafter. Resolving power is lost at about the fourteenth or fifteenth par-
 tial, with the remaining spectrum being essentially noise.

 Do not be misled by the term "harmonic distortion," which is just a mea-
 sure of the relative amounts of energy in those partials that are integral mul-
 tiples of the fundamental frequency. High harmonic distortion here implies
 a massive transfer of the energy of vibration of the fundamental into the
 harmonic partials, which agrees with Raman's (1922) view.

 The spectral analysis of the Pa string with juari thread (Figure 9B) is in
 marked contrast to that without juari. The fundamental is still at 106.25
 Hz, of course, but its relative amplitude is quite low. The amplitudes of the
 second and third partials increase steeply to the fourth partial, which tends
 to be the component with maximal amplitude. The next strongest partials
 are the seventh, tenth, fifteenth, and sixteenth, and partials 21 and 22 have
 considerable amplitude. This extended range of high-amplitude partials is
 reflected in the total harmonic distortion of 37.27 dB, which corresponds to
 a total harmonic rms voltage distortion of over 7300%.

 Spectral analyses of the Ni string (131.25 Hz), as well as 160-msec seg-
 ments of the waveforms, without and with juari, are shown in Figures 10A
 and 10B, respectively. The spectral analyses for the Ma string (93.75) with-
 out and with juari are shown in Figure 1 1 A and 1 IB.

 RELATING TAMBÛRÀ SPECTRA TO MUSICAL SCALES

 The 21 ratios (scale degrees or notes) of just temperament (Taylor, 1965)
 may be assigned to the set of 12 tones from which râg scales may be formed,
 as shown in Table 3. We relate these 21 values to the Indian scale on the
 basis of tunings used by musicians of the culture. The measurements of
 Deva (1967), Jairazbhoy and Stone (1976), as well as our own measure-
 ments of the tambûrâ strings have been considered in determining the dis-
 tribution of the 12 scale tones over the 21 degrees. These measurements ver-
 ify that intervallic distances between tones of the scale may be identified in
 the justly tempered division of the octave. Where there is a variation of tun-
 ing between performers or performances the difference consistently falls
 within a window that is acknowledged in the just-temperament system to
 span the range of a given tone. For example, the ambiguous areas that sur-
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 TABLE 3

 Assignment of Scale Tones According to the Ratios of Just Intonation

 Degree Name Ratio Frequency Cents

 1 Sa 1 70.00 0a
 2 Re-komal 25/24 72.91 71
 3 Re-komal 16/15 74.67 112
 4 Re 9/8 78.75 204
 5 Ga-komal 75/64 82.00 275
 6 Ga-komal 6/5 84.00 316
 7 Gai 5/4 87.50 386
 8 Maj 125/96 91.00 457
 9 Ga2 32/25 89.60 427
 10 Ma2 4/3 93.00 498a
 11 Ma-tivr 45/32 98.40 590
 12 Ma-tivr 36/25 100.80 631
 13 Pa 3/2 105.00 702a
 14 Dha-komal 25/16 109.00 773
 15 Dha-komal 8/5 112.00 814
 16 Dha 5/3 116.67 884

 Dha 12/7 119.44 925
 17 Ni-komal 225/128 123.00 997
 18 Ni-komal 9/5 126.00 1018
 19 Ni! 15/8 131.25 1088a
 20 Ni3 125/64 136.70 1159
 21 Ni2 48/25 134.40 1129
 22 Sa' 2 140.00 1200a

 aMeasured tones of the three tambura tunings.

 round the minor and major third (300-400 cents) and the flat and natural
 seventh (1100-1100 cents) degrees of a musical scale are taken into ac-
 count. One discrepancy found was the possibility of a sixth degree (Dha)
 which could be played as 119 Hz instead of 116. This tone fills a gap be-
 tween the sixteenth and seventeenth tones of the justly tempered division of
 the octave. For the purposes of our analysis, the Dha tone was allowed the
 two values it assumes in practice.

 To the end of relating tambura spectra to musical scales, we devised an
 index of interaction complexity based on the number of possible coinci-
 dences of a spectral peak with each of the 21 notes of the justly tempered
 system. A coincidence match was declared only if two conditions held: (1)
 the amplitude of the peak was no less than 10 dB below that of the funda-
 mental and (2) the frequency of the peak was within ±25 cents (a window
 of 50 cents) of the frequency of a scale note or its higher harmonics over all
 octaves of the musical range ( < 5 kHz). Each match was weighted by its
 relative amplitude in decibels and summed for a given degree. Call this sum
 the weighted number of matches. The weighted index of complexity, S, was
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 defined as the sum of the weighted number of matches over all 21 degrees.
 An algorithm for computing S is given in the Appendix.

 Values of weighted index of complexity were computed for tambùrà
 strings without juari and with juari. The results for the Ma drone string are
 shown in Table 4 (no juari) and Table 5 (juari). The usual assignment of
 note names to each degree is shown. An example will show how the
 weighted index is enhanced by the addition of the juari thread. Sa (Degree
 1, Table 4) without juari has nine matches whose weighted sum is 381, but
 the number of matches for Sa with juari (Degree 1, Table 5) increases to 53
 and has a weighted sum of 2129. The weighted richness over all 21 degrees
 without juari is about 13,507 but with juari increases to about 37,980. Of
 the total possible 1597 matches, there are 905 with juari but only 287 with-
 out juari. This increase of complexity when the juari thread is added is
 shown in Figures 12 and 13, which plot the relations among amplitude (in
 decibels relative to the fundamental), partial number, and scale degree (mu-
 sical note) for the Pa drone.

 In looking at these data it is vital to know that a drone is the stable
 ground against which a melody is interwoven through the harmonic struc-

 table 4

 Ma Drone String (93 Hz) without Juari Against the Scale of Sa (280 Hz)

 Degree Name Matches Weighting Avg. Weight dBDiff. Avg.dBDiff.

 1 Sa 9 381.39 42.38 -52.32 -5.81
 2 Re-komal 16 757.80 47.36 -13.24 -0.83
 3 Re-komal 16 736.78 46.05 -34.26 -2.14
 4 Re 15 700.31 46.69 -22.54 -1.50
 5 Ga-komal 16 727.78 45.49 -43.26 -2.70
 6 Ga-komal 16 729.02 45.56 -42.02 -2.63
 7 Ga 6 271.92 45.32 -17.22 -2.87
 8 Ma 28 1343.68 47.99 -5.64 -0.20
 9 Ga 5 232.43 46.49 -8.52 -1.70
 10 Ma 28 1343.68 47.99 -5.64 -0.20
 11 Ma-tivr 7 333.67 47.67 -3.66 -0.52
 12 Ma-tivr 9 457.17 50.80 23.46 2.61
 13 Pa 13 629.09 48.39 2.62 0.20
 14 Dha-komal 15 685.81 45.72 -37.04 -2.47
 15 Dha-komal 11 494.11 44.92 -35.98 -3.27
 16 Dha 11 580.67 52.79 50.58 4.60
 17 Ni-komal 15 715.83 47.72 -7.02 -0.47
 18 Ni-komal 18 838.02 46.56 -29.40 -1.63
 19 Ni 10 476.88 47.69 -5.02 -0.50
 20 Ni 12 553.38 46.11 -24.90 -2.07
 21 Ni 11 517.61 47.06 -12.48 -1.13

 note. The weighted richness of this relationship is 13507.03. The average weighted
 richness is 643.19. Total possible matches = 1597. Actual matches = 287. This relation-
 ship has an absolute measure of richness equal to 0.18.
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 ture of the sound. So, when we say that a certain ràg scale and drone tuning
 interact strongly, we mean that the partial structure within the drone in-
 fluences the melodic structure of the ràg. Thus, we infer from an emphasis
 of specific partials by a drone string that a performer will hear those tones
 more easily than those that are less well represented. Both performer and
 listener will expect these points of strong interaction as points of resolution.

 The musical significance of juari is easier to grasp if the 21 scale degrees
 are assigned to the seven notes of North Indian classical music. These are
 Sa, Re, Ga, Ma, Pa, Dha, and Ni, of which Sa and Pa are fixed. The other
 five are movable. These are Re-komal, Ga-komal, Ma-tivr, Dha-komal,
 and Ni-komal, where komal and tïvr are analogous to flat and sharp, re-
 spectively, of Western music. We make this assignment for all drone strings
 in the way shown for Ma in Table 4.

 In the case of the Pa drone string (106.25 Hz) with and without juari,
 Figure 14A shows the strength of interaction (in mean decibel difference)
 summed across all partials for each of the 12 musical notes (Sa ... Ni).
 Clearly the interactive strengths have increased, often markedly so, as with
 Ma, Ma-tïvr, and Dha-komal. In the case of the other drone strings, there is

 table 5

 Ma Drone String with Juari (93 Hz) Against the Scale of Sa (280 Hz)

 Degree Name Matches Weighting Avg. Weight dBDiff. Avg.dBDiff.

 1 Sa 53 2129.15 40.17 -106.92 -2.02
 2 Re-komal 37 1647.94 44.54 86.91 2.35
 3 Re-komal 45 1948.15 43.29 49.60 1.10
 4 Re 45 1871.28 41.58 -27.27 -0.61
 5 Ga-komal 45 1845.28 40.01 -53.27 -1.18
 6 Ga-komal 51 2092.00 41.02 -59.69 -1.17
 7 Ga 36 1427.53 39.65 -91.31 -2.54
 8 Ma 57 2471.34 43.36 66.51 1.17
 9 Ga 22 828.36 37.65 -99.82 -4.54
 10 Ma 54 2347.35 43.47 69.09 1.28
 11 Ma-tivr 37 1513.31 40.90 -47.72 -1.29
 12 Ma-tivr 38 1607.03 42.29 3.81 0.10
 13 Pa 52 2087.99 40.15 -105.89 -2.04
 14 Dha-komal 44 1817.09 41.30 -39.27 -0.89
 15 Dha-komal 38 1575.90 41.47 -27.32 -0.72
 16 Dha 39 1740.43 44.63 95.02 2.44
 17 Ni-komal 42 1775.50 42.27 3.52 0.08
 18 Ni-komal 47 2039.19 43.39 -56.26 1.20
 19 Ni 38 1655.74 43.57 52.52 1.38
 20 Ni 54 2239.31 41.47 -38.95 -0.72
 21 Ni 31 1319.67 42.57 11.78 0.38

 note. The weighted richness of this relationship is 37979.54. The average weighted
 richness is 1808.55. Total possible matches = 1597. Actual matches = 905. This relation-
 ship has an absolute measure of richness equal to 0.57.
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 Fig. 12. Plot of amplitude, partial number, and scale degree of Pa drone string (106.25 Hz)
 without juari.

 likewise an increase in interactive strengths when the juari is added, and the
 patterns of the increased strengths are different for each drone (Figures
 14B,C). These unique patterns are what drive the choice of different drone
 tunings for different râgs.

 FROM CIRCLE OF THAT TO RAG

 So far, we have related the spectra of the drone strings, in different tun-
 ings, to the possible notes of a scale, based on Sa, which has been divided
 into 21 or 12 values, according to a musical scale theory. We see that there
 is a significant difference in the strengths of certain partials when the juari
 threads are placed on the bridge. The threads modulate the behavior of the
 string, which is already nonlinear because of its grazing contact with the
 curved bridge (Raman, 1922).

 We wish to predict some possible consequences of the juari for the Indian
 musical system and to see how the effect of adding the juari might influence
 choices of the sitârist.

 How is the actual music related to the components of certain râg scales?
 Good clues may be found in the larger structural system in Indian music
 known as the Circle of Thât(s). This is a system of classifying groups of râgs
 according to their scales and the placement of accidentals (altered notes, as
 in the Western chromatic scale). There are 10 commonly used thâts (of 32
 possible), each having seven pitches in the sequence Sa Re Ga Ma Pa Dha
 and Ni, or altered versions of those tones with komal (flat) and rivr (sharp).
 In considering the system of thâts, no account is taken of melodic motives as
 in râg, nor is any emotional quality associated with a that (Jairazbhoy,
 1971, p. 46).
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 Fig. 13. Plot of amplitude, partial number, and scale degree of Pa drone string (106.25 Hz)
 with juari.

 Fig. 14. Strength of interaction in mean decibel difference relative to the fundamental,
 summed across all partials for each of the 21 degrees (see Table 3). Black bars are without
 juari; hatched bars are with juari. (A) Pa drone string, (B) Ma drone string, (C) Ni drone
 string.
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 The oldest of the 10 thâts are identical to the seven modes used in Grego-
 rian chant, sometimes referred to as the Church modes. Three alterations of
 those seven modes have been added in India since the seventeenth century,
 and their use has coincided with the appearance of tambûrâ drone tunings
 other than the more traditional Pa-Sa. The Church modes roughly corres-
 pond to the white notes on a modern piano, but were most likely sung in an
 unequal tuning system by using the intervals of the Pythagorean or justly
 tempered scale. Each mode starts on one of the seven diatones beginning on
 middle C of the piano. Thus C1-C2 is the Ionian mode, now known as the
 major scale; A1-A2 is the Aeolian mode, which is the natural minor scale;
 and so on. In the Indian musical system, each that is transposed so that the
 starting note is always the tone Sa. The intervals for each that are preserved
 by the addition of the accidentals twr (sharp = #) and komal (flat = t).

 A few examples will clarify this notion. The scale of Kâfi That (Sa Re Ga-
 komal Ma Pa Dha Ni-komal) corresponds to the Dorian mode (D1-D2).
 Bhairvï That is exactly the Phrygian mode (E1-E2) and Mârvâ That is very
 close to what is known as the "Gypsy" scale wherein the harmonic minor
 scale is altered. Mârvâ is actually an alteration of the Lydian mode (F1-F2)
 except for a flatted second degree. Figure 15 shows the scales of the three
 thàts with intervals in cents. Observe that all semitones are wider than

 equal temperament, but with a compensating narrowness in some whole
 tones and thirds, which maintains the 1200-cent octave.

 Fig. 15. Scales of three thâts in Western notation. The Indian name is shown below each
 note, along with interval size in cents.
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 There are certain natural relationships to consider when comparing the
 components of a râg scale to specific drone tunings and to its that. For ex-
 ample, the Ma-Sa drone tuning would not be used ordinarily with a râg be-
 longing to any of the group of thâts that are identified by the use of a Ma-
 tïvr. However, we have seen that because of the acoustic effects elicited by
 juari, the tambura drone has the potential for complex and subtle interac-
 tion with the sitâr.

 AN EXAMPLE IN KÀFÏ THAT

 Is there a change in the correlation of a given drone tuning with a particu-
 lar râg or that when the juari threads are present? We compare two ràgs
 associated with Kàfï That, Bhïmplàsï and Bàgesrï. Râ Bhïmplasï has the
 form given by the notes {Sa Re Ga-komal Ma Pa (Dha) Ni-komal}. (The
 tone Dha is often omitted as a member of the scale.) Rag Bàgesrï is based on
 the scale tones {Sa Re Ga-komal Ma (Pa) Dha Ni-komal} and generally
 omits Pa.

 On the basis of measured spectra for single strings without juari, model
 predictions show that the Ma drone fits the notes of Kàfï That well, but the
 Pa drone does not. (The Ni drone would not be used against a that having
 Ni-komal.) When the juari are added, the weighted interaction complexity
 of both Ja and Pa increases greatly.

 This means that Ma-Sa and Pa-Sa have stronger affinities to the scale of
 Kàfï That with juari than without (see Figure 16). In the cases of the two
 rags, we predicted from the model that the Ma drone fits the scale of Bàgesrî
 well (Figure 17), that the Pa drone fits the scale of Bhïmplàsï well (Figure
 1 8 ) and that these affinities are heightened by the effect of juari. Indeed, this

 prediction is borne out in practice. (In Figures 1 7 and 1 8 only the obligatory
 notes of the ràg are shown.)

 The case for use of Ma-Sa with Bàgesrî and use of Pa-Sa with Bhïmplàsï
 can be computed from relations between the partials and the scale tone be-
 ing enhanced by the juari threads. Juari effects work in conjunction with
 other factors, including the constraints of the musical system and aesthetic
 preference of the improvising performer.

 FULL-DRONE TUNINGS IN SEVERAL THÀTS

 In musical practice, the tambura drone is made of all four strings and
 three notes sounding together, with juari threads adjusted for maximal
 buzz. To the end of relating full-drone tunings to given thàts, we analyzed
 the three drone tunings with all strings sounding:

 {Pa Sa Sa Sa'} {Ma Sa Sa Sa'} {Sa Ni Sa Sa'}
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 Fig. 16. Strength of interaction in mean decibels relative to the fundamental summed across
 all partials for the notes of Kafi That for Ma and Pa drone strings with and without juari.

 Fig. 17. Strength of interaction in mean decibels relative to the fundamental summed across
 all partials for obligatory notes of Râg Bâgesrï for Ma and Pa drone strings with and without
 juari.
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 Fig. 18. Strength of interaction in mean decibels relative to the fundamental summed across
 all partials for obligatory notes of Râg Bhïmplâsï for Ma and Pa drone strings with and with-
 out juari.

 Figures 19, 20, and 21 show the power spectra of the tunings for Pa, Ma,
 and Ni, respectively. As in the case of single strings, the use of juari causes
 greatly increased power in the upper partials. Tables 6-8 show the values
 of the weighted index of complexity for the three tunings as previously dis-
 cussed for the case of single string (see Tables 4 and 5). As before, we as-
 signed the 21 scale degrees to the 12 notes (seven plus five accidentals) of
 the Indian scale.

 Figure 22 displays the interaction of each of the three tunings with Kâfî,
 Bhairvï, and Mârvâ thâts, derived from Table 6.

 KâfïThât(Figurel5A):
 Sa Re Ga-komal Ma Pa Dha Ni-komal

 Bhairvï That (Figure 15B):

 Sa Re-komal Ga-komal Ma Pa Dha-komal Ni-komal

 Màrvà That (Figure 15C):

 Sa Re-komal Ga Ma-tïvr Pa Dha Ni
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 Fig. 19. Spectrum of full-drone tuning {Pa Sa Sa Sa'}.

 Fig. 20. Spectrum of full-drone tuning {Ma Sa Sa Sa'}.
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 Fig. 21. Spectrum of full-drone tuning {Sa Ni Sa Sa'}.

 The central comparison to be made here is of the tunings for a given that.
 Down the column of Kâfi That, notice that the Pa, Ma, and Ni tunings have
 distinctly different emphases on particular notes of the that. Of course, the
 expected strengths of Pa and Ma are evident for the Pa and Ma drone tun-
 ings. Re and Ga-komal are much stronger in Pa tunings than in the Ma tun-
 ing. The tones Dha and Pa are relatively very strong in the Ni tuning, albeit
 the presence of Ni-komal rules out the use of the Ni tuning with this that.

 In Bhairvï That (middle column), the Pa tuning has a relatively weak in-
 teraction with Re-komal and Ga-komal. In the râg Bhairvï, Re-komal is
 sometimes replaced with Re natural; the Dha-komal may be altered also.
 This suggests that the Pa tuning is better for râg Bhairvï, because the rela-
 tion with Re-komal is secondary here. A case could be made for the Ma
 tuning with a ràg in this that which emphasizes the relation between Re-
 komal, Ma, and Ni-komal. The pentatonic râg Malkos, in Bhairvï That, is
 usually accompanied by the Ma drone. Jairazbhoy (1971) notes that there
 have been performances of Màlkos wherein the Sa drone note is abandoned
 entirely so that Ma becomes the ground tone. The graph of the Ma drone
 tuning suggests that there is an acoustic, perceptual basis for this variant
 performance (Fig. 22, row 2, column 2).
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 In Mârvà That (right column), the râg Mârvâ uses the tones Ma-tïvr and
 Ni but omits Pa. There is also a strong affinity of Ga and Ni in râg Mârvâ,
 which uses the Ni tuning, and this is confirmed by the strength of Ga in our
 analysis (row 3, column 3).

 Our goal in this article has been to exhibit an analytical basis for the
 choice of tunings in the choice of ràgs, rather than to make strong specific
 claims. The perceptual basis for the efficacious choice of tunings in North
 Indian classical music must be tested experimentally, for example by prefer-
 ence scaling studies, among cultures and between musicians and nonmusi-
 cians.1

 table 6

 Pa (105 Hz) Full Drone Compared with Scale of Sa (280 Hz)

 Degree Name Matches Weighting Avg. Weight dBDiff. Avg.dBDiff.

 1 Sa 78 2822.82 36.19 705.35 9.04
 2 Re-komal 26 694.66 26.72 19.27 0.74
 3 Re-komal 39 1273.29 32.65 212.48 5.45
 4 Re 61 2007.11 32.90 410.57 6.73
 5 Ga-komal 34 1026.63 30.19 109.27 3.21
 6 Ga-komal 49 1643.14 33.53 353.53 7.21
 7 Gai 50 1741.87 34.84 394.52 7.89
 8 Mai 31 990.97 31.97 167.98 5.42
 9 Ga2 39 1257.80 32.25 246.79 6.33
 10 Ma2 50 1866.92 37.34 519.57 10.39
 11 Ma-tivr 44 1549.88 35.22 391.27 8.89
 12 Ma-tivr 45 1598.35 35.52 390.30 8.67
 13 Pa 73 2649.21 36.29 758.19 10.39
 14 Dha-komal 26 866.98 33.35 150.09 5.77
 15 Dha-komal 49 1659.57 33.87 332.61 6.79
 16 Dha 37 1333.03 36.03 342.05 9.24
 17 Ni-komal 48 1738.92 36.23 453.10 9.44
 18 Ni-komal 50 1924.07 38.48 593.32 11.87
 19 Nil 50 1598.99 31.98 280.69 5.61
 20 Ni3 15 466.14 31.08 77.29 5.15
 21 Ni2 37 1204.65 32.56 259.32 7.01

 note. Weighted richness = 31915.00, Total average weight = 709.18, Total dB dif-
 ference = 7167.56, Total average dB difference = 151.26.

 1. We thank Dr. Carleen Hutchins, Permanent Secretary of The Catgut Acoustical Soci-
 ety for her gracious help in alerting us to some crucial issues in musical strings. The UCLA
 Libraries helped us by finding original works of Raman (Engineering & Mathematical Sci-
 ences Library) and of Helmholtz (History Division of the Biomédical Library). Professor
 Roger A. Kendall, Department of Ethnomusicology and Systematic Musicology, made
 thoughtful comments on the manuscript.
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 TABLE 7

 Ma (93 Hz) Full Drone Compared with Scale of Sa (280 Hz)

 Degree Name Matches Weighting Avg. Weight dBDiff. Avg.dBDiff.

 1 Sa 85 3783.94 44.52 1575.88 18.54
 2 Re-komal 37 1511.96 40.86 851.19 23.01
 3 Re-komal 56 2272.41 40.58 1021.66 18.24
 4 Re 43 1843.35 42.87 777.13 18.07
 5 Ga-komal 48 2068.47 43.09 1027.87 21.41
 6 Ga-komal 47 2080.66 44.27 986.47 20.99
 7 Gai 54 2123.96 39.33 810.09 15.00
 8 Ma! 68 2959.69 43.52 1779.24 26.17
 9 Ga2 23 982.63 42.72 408.74 17.77
 10 Ma2 82 3497.80 42.66 1811.90 22.10
 11 Ma-tivr 45 1857.96 41.29 876.89 19.49
 12 Ma-tivr 49 2035.86 41.55 872.61 17.81
 13 Pa 56 2586.02 46.18 1269.18 22.66
 14 Dha-komal 45 1899.95 42.22 918.88 20.42
 15 Dha-komal 58 2533.72 43.68 1125.79 19.41
 16 Dha 49 2127.33 43.41 1074.23 21.92
 17 Ni-komal 56 2375.64 42.42 1102.86 19.69
 18 Ni-komal 42 1815.47 43.23 739.72 17.61
 19 Nii 45 1871.03 41.58 801.84 17.82
 20 Ni3 44 1913.51 43.49 1253.36 28.49
 21 Ni2 31 1253.77 40.44 668.00 21.55

 note. Weighted richness = 45395.13, Total average weight = 893.92, Total dB dif-
 ference = 21753.53, Total average dB difference = 428.17.

 2. Hutchins's (1983) history of research on the violin was very helpful for preparing this
 article, as were a number of the original papers on the musical acoustics of the violin family
 reprinted in Hutchins (1975, 1976). Also very useful was Mclntyre and Schumacher (1978).
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 TABLE 8

 Ni (131.25 Hz) Full Drone Compared with Scale of Sa (280 Hz)

 Degree Name Matches Weighting Avg. Weight dBDiff. Avg.dBDiff.

 1 Sa 79 3938.35 49.85 638.90 8.09
 2 Re-komal 17 742.12 43.65 48.77 2.87
 3 Re-komal 38 1744.50 45.91 165.60 4.36
 4 Re 35 1720.06 49.14 258.81 7.39
 5 Ga-komal 30 1390.04 46.33 147.54 4.92
 6 Ga-komal 25 1193.38 47.74 143.63 5.75
 7 Gai 89 4200.68 47.20 537.73 6.04
 8 Ma! 22 1038.12 47.19 136.02 6.18
 9 Ga2 16 736.58 46.04 73.78 4.61
 10 Ma2 42 2067.13 49.22 310.03 7.38
 11 Ma-tivr 54 2663.70 49.33 446.00 8.26
 12 Ma-tivr 20 981.89 49.09 134.89 6.74
 13 Pa 56 2645.45 47.24 326.65 5.83
 14 Dha-komal 23 1069.39 46.50 110.74 4.81
 15 Dha-komal 34 1604.91 47.20 176.21 5.18
 16 Dha 59 2799.38 47.45 366.93 6.22
 17 Ni-komal 36 1756.77 48.80 266.97 7.42
 18 Ni-komal 29 1426.90 49.20 216.95 7.48
 19 Nil 57 2542.79 44.61 193.44 3.39
 20 Ni3 23 1073.46 46.67 136.81 5.95
 21 Ni2 5 209.34 41.87 -3.41 -0.68

 note. Weighted richness = 37544.94, Total average weight = 990.23, Total dB dif-
 ference = 4832.99, Total average dB difference = 118.20.
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 Appendix

 The level of interaction of the spectra of the drone strings with the scale based on SA is
 computed as follows: r 25

 Match (dik, iP) = -£- ^ dik ss £ 2 1200
 2 1200

 and
 &p ^ a0 - 10

 /tfp if match (</,*, £p) \

 \ 0 otherwise /

 20

 Si = 2 Sik
 k=i

 Where dj is base frequency of scale degree i, ie 1...21
 dik is &th multiple of dh k e 1...20
 £p is frequency of pth partial, p e 0...29,
 8 is frequency resolution,
 £0 is base frequency of measured drone string,

 ap is measured amplitude in decibels at pth partial, and
 Sik is strength of scale degree i, multiple k.

This content downloaded from 80.192.115.51 on Tue, 07 Jun 2016 21:41:32 UTC
All use subject to http://about.jstor.org/terms


	Contents
	[unnumbered]
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108

	Issue Table of Contents
	Music Perception, Vol. 7, No. 2 (Winter, 1989), pp. 75-204
	Front Matter
	健牣数瑵慬Ⱐ䅣潵獴楣慬Ⱐ慮搠䵵獩捡氠䅳灥捴猠潦⁴桥⁔慭戁歲ā⁄牯湥⁛灰⸠㜵ⴱ〸�
	Expectation in Music: Investigation of Melodic and Harmonic Processes [pp. 109-149]
	Sensitivity to Key Change in Chorale Sequences: A Comparison of Single Voices and Four-Voice Harmony [pp. 151-168]
	Spun Steel and Stardust: The Rejection of Contemporary Compositions [pp. 169-185]
	Reviews
	Review: untitled [pp. 187-195]
	Review: untitled [pp. 195-201]

	Back Matter



